- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
- Rodier, N., Cense, J.-M., Babingui, J.-P., Courant, J. & Le Baut, G. (1994). Acta Cryst. C50, 960–963.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, pp. 410-412. Londres: MacMillan.

Acta Cryst. (1994). C50, 960-963

Structure du *N*-Phényltroloxamide et du *N*-Phényltroloxthioamide, Inhibiteurs de Leucotriènes

N. RODIER

Laboratoire de Chimie minérale, Faculté des Sciences pharmaceutiques et biologiques, 5 Rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France

J.-M. CENSE

Laboratoire d'Informatique appliquée à la Chimie, ENSCP, 11 Rue P. et M. Curie, 75231 Paris CEDEX 05, France

J.-P. BABINGUI, J. COURANT ET G. LE BAUT

Laboratoire de Chimie thérapeutique, Faculté de Pharmacie, 1 Rue Gaston-Veil, 44035 Nantes CEDEX, France

(Recų le 24 juin 1993, accepté le 27 septembre 1993)

Abstract

Both compounds [*N*-phenyl-6-hydroxy-2,5,7,8-tetramethyl-2*H*-1-benzopyran-2-carboxamide (*N*-phenyltroloxamide), $C_{20}H_{23}NO_3$, and *N*-phenyl-6-hydroxy-2,5,7,8-tetramethyl-2*H*-1-benzopyran-2-carbothioxamide (*N*-phenyltroloxthioamide), $C_{20}H_{23}NO_2S$] have very similar molecular geometries. The dihydropyranic ring displays a half-chair conformation. There is a delocalized orbital over the amide or the thioamide group. In each molecule, a strong N--H···O and a weak C--H···O or C--H···S intramolecular hydrogen bond form two pseudocycles. The crystal structure consists of dimers in which the molecules are linked together by two intermolecular O--H···O or O--H···S hydrogen bonds.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Commentaire

Le N-phényltroloxamide et le N-phényltroloxthioamide manifestent des propriétés inhibitrices de la lipoperoxydation et de la formation de leucotriènes. Leur étude cristallographique a été entreprise dans le cadre des relations entre la structure et l'activité pharmacologique. Elle est motivée par l'intérêt que ces deux composés sont susceptibles de présenter dans le traitement des affections d'origine allergique.

Dans ce qui suit, le N-phényltroloxamide et le *N*-phényltroloxthioamide sont désignés respectivement par les termes amide et thioamide ou par composé (1) et composé (2). Les coordonnées atomiques relatives et les facteurs de température isotropes équivalents sont rassemblés dans le Tableau 1. les longueurs et les angles des liaisons dans le Tableau 2. La molécule de l'amide est représentée par la Fig. 1 et la projection de sa structure sur la face (010) par la Fig. 2. Les numéros des atomes et les lettres utilisées pour désigner les cycles sont les mêmes dans les deux molécules. Ces lettres sont accompagnées éventuellement du chiffre 1 ou du chiffre 2 qui rappelle le composé auquel le cycle appartient. Lorsque deux valeurs sont citées à la suite, la première se rapporte à l'amide, la seconde à la grandeur homologue du thioamide.

Les cycles A et C peuvent être considérés comme plans. En effet, les distances des atomes qui constituent chacun d'eux au plan moyen calculé avec les mêmes atomes [plan P(A1), P(A2), P(C1) ou P(C2)] restent de l'ordre des incertitudes. Les valeurs de l'angle de torsion C(4)—C(5)—C(10)—O(1) [1,0(4)et $0,2(3)^{\circ}$ indiquent que les atomes qui le forment sont coplanaires dans les deux molécules. Soit P(B)le plan moyen correspondant. C(2) et C(3) sont situés de part et d'autre de P(B). Ils sont distants respectivement de 0,369 (3) et de 0,269 (3) Å de $P(B_1)$, de 0,331 (3) et de 0,295 (3) Å de $P(B_2)$. Le cycle B possède donc la forme demi-chaise. La 'symétrie dominante' (Duax & Norton, 1975) est donc la symétrie par rapport à un axe binaire passant par les milieux de C(2)—C(3) et de C(5)—C(10). L'écart à la symétrie idéale s'exprime par $\Delta C_2^{2,3} =$

Fig. 1. Dessin de la molécule de N-phényltroloxamide, numéros attribués à ses atomes et représentation des liaisons hydrogène intramoléculaires. O(22) est superposé à H(22).

Fig. 2. Projection de la structure du *N*-phényltroloxamide sur la face (010). Les atomes des molécules représentées, partiellement ou complètement ont les coordonnées suivantes: x, y, z; x, 1 + y, 1 + z; 1 + x, 1 + y, 1 + z; x, y, 1 + z; 1 - x, 1 - y, 1 - z; 1 - x, 1 - y, - z; 1 - x, - y, - z; 1 - x; 1 - x; 1 - x, - y; 1 - x; 1

14,2° dans l'amide et 5,1° dans le thioamide. Dans les deux composés, O(1) et C(4) sont très proches de P(A). Donc, P(A) et P(B) sont pratiquement confondus. Les angles dièdres P(A1)P(C1) et P(A2)P(C2) valent, le premier 98,17 (7)°, le second 98,6 (1)°.

Les distances C(11)—N(12) [1,349 (3) et 1,331 (3) Å] sont comparables à leurs homologues dans la pyridine (Bak, Hansen-Nygaard & Rastrup-Andersen, 1958). Elles expriment la présence d'une orbitale délocalisée sur les groupements amide et thioamide. La longueur de C(2)—C(11) dans le thioamide [1,552 (3) Å] peut s'expliquer par l'encombrement stérique autour de C(2).

Si l'on exclut C(11)—O(19) et C(11)—S(19), les longueurs des liaisons homologues sont pratiquement identiques. Il en de même pour les angles à quelques exceptions près. Celles-ci concernent C(2)— O(1)—C(10) et les angles formés par C(11) et N(12). L'ecart maximal s'observe pour C(11)—N(12)— C(13) [128,3 (2) et 133,0 (2)°]. Les angles de torsion homologues ont des valeurs du même ordre de grandeur et, le plus souvent, comparables. Les géométries des deux molécules sont donc très voisines.

Il semble que l'on puisse admettre l'existence, dans les deux composés, de trois liaisons hydrogène. Ces liaisons sont, dans l'amide, N(12)—H(12)···O(1) [2,652 (3) Å. 113 (2)°], C(18) - H(18) - O(19)[2,960 (3) Å, $109 (2)^{\circ}$] et O(22)—H(22)···O(19ⁱ) $[2,962 (3) \text{ Å}, 160 (3)^{\circ}, (i) 1-x, -y, -z]$ et, dans le thioamide N(12) - H(12) - O(1)[2,571 (2) Å, $117 (2)^{\circ}$, C(18)—H(18)····S(19) [3,247 (2) Å, 119 (2)^{\circ}] et O(22)—H(22)... $S(19^{ii})$ [3,370 (2) Å, 149 (3)°, (ii) 1-x, 1-y, -z]. Les deux premières sont intramoléculaires et forment respectivement les pseudocycles O(1)C(2)C(11)N(12)H(12) et O(19)C(11)-N(12)C(13)C(18)H(18) ou S(19)C(11)N(12)C(13)-C(18)H(18). La troisième, intermoléculaire, est responsable de la formation de groupements dimères (Fig. 2).

N(12)—H(12)···O(1) est une liaison forte dans les deux composés. Les deux dernières sont mises en évidence par le fait que les distances H(18)···O(19) [2,46 (3) Å], H(22)···O(19ⁱ) [2,12 (3) Å], H(18)···S(19) [2,68 (2) Å] et H(22)···S(19ⁱⁱ) [2,70 (4) Å] sont toutes inférieures à la somme des longueurs généralement admises pour rayons de van der Waals des atomes concernés, soit r(O) = 1,50 Å, r(S) = 1,80 Å et r(H) = 1,10 Å. En outre, les distances H···O et H···S réelles doivent être légèrement inférieures aux distances calculées puisque les positions trouvées pour les atomes d'hydrogène sont systématiquement trop près des atomes auxquels ils sont liés.

Les charges portées par les atomes C(18), H(18), C(11), O(19) et S(19) ont été calculées avec le programme *MOPAC* (Stewart, 1983) à l'aide de l'Hamiltonien *PM3* (Stewart, 1989). En prenant pour unité la valeur absolue de la charge élémentaire, les valeurs obtenues sont: pour C(18) – 0,098 et – 0,117, pour H(18) 0,129 et 0,178, pour C(11) 0,213 et 0,166, pour O(19) – 0,372 et pour S(19) – 0,278. Dans la mesure où ces résultats experiment la réalité, ils montrent que C(11)—O(19) et C(11)—S(19) sont fortement polarisées et que la polarisation de C(18)—H(18), relativement faible en raison de l'absence de substituants attracteurs d'électrons sur le noyau benzénique, se fait dans le sens nécessaire à l'établissement de la liaison.

Partie expérimentale

Composé (1) Données cristallines C₂₀H₂₃NO₃ M_r = 325,41

Mo $K\alpha$ radiation $\lambda = 0.7107$ Å

$C_{20}H_{23}NO_3\ ET\ C_{20}H_{23}NO_2S$

Triclinique $P\overline{1}$ a = 8,705 (3) Å b = 8,800 (3) Å c = 11,902 (3) Å $\alpha = 101.53$ (2)°	Paramètres de la maille à l'aide de 25 réflexions θ = 7,00-12,35° μ = 0,077 mm ⁻¹ T = 293 K Plaquette rectangulaire		3445 réflexions mesurées 3445 réflexions indépendantes 2310 réflexions observées $[I \ge 3\sigma(I)]$		3 réflexions de référence fréquence: 120 min variation d'intensité: non significatives	
$\beta = 92.94 (2)^{\circ}$ $\gamma = 99.28 (2)^{\circ}$ $V = 878 (1) Å^{3}$ Z = 2 $D_x = 1,230 \text{ Mg m}^{-3}$	0,30 × 0,27 × 0,09 mm Incolore Source du cristal: évaporation d'une solution dans l'éther diisopropy- lique	Affineme Affineme R = 0.04 wR = 0.05 S = 1.65 2310 réf	nt ent basé sur les 0 051 lexions	S F	$(\Delta/\sigma)_{max} = 0.02$ $\Delta\rho_{max} = 0.24$ (4) $\Delta\rho_{min} = -0.15$ (4 Correction d'extin appliquée	e $Å^{-3}$) e $Å^{-3}$ ction: non
Collection des données Diffractomètre Enraf-Nonius CAD-4 Balayage $\theta/2\theta$ Pas de correction d'abagementes	$\theta_{\text{max}} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = 0 \rightarrow 10$ $l = -14 \rightarrow 14$ 2 = 2600	Affine d'hydr seulen $w = 1/\sigma^2$	ent des atomes rogène sur x, y, nent ${}^{2}(F)$	Z	International Ta X-ray Crystallo (1974, Tome IV	ion des ables for graphy
3080 réflexions mesurées 3080 réflexions	fréquence: 120 min variation d'intensité:	Tableau	Tableau 1. Coordonnées atomiques et facteurs d'agitationthermique isotropes équivalents (Ų)			
indépendantes	3,4%, correction		Bé	$a_q = \frac{4}{3} \sum_i \sum_{i=1}^{n} \sum_{i=1}^{n$	$\beta_{ij}\mathbf{a}_i \cdot \mathbf{a}_j$.	
$[I > 3\sigma(I)]$	mieane		x	. у У	z	B _{ėq}
		(1)	0.1170 (0)	0.1700 (2	0.1004 (1)	2 (0 (4)
Affinement		C(2)	0,1172 (2) 0,1423 (3)	0,1708 (2	0,1924(1) 0,2498(2)	3,68 (4) 3,58 (6)
Affinement basé sur les E	Correction d'extinction:	C(3)	0,1035 (3)	-0,1111 (3) 0,1655 (2)	3,93 (6)
R = 0.042	Stout & Jensen (1968)	C(4)	0,2028 (3)	-0,1163 (3	b) $0,0637(2)$	3,73 (6)
wR = 0.049	Coefficient d'extinction:	C(5) C(6)	0,3031 (3)	0.0503 (3	-0.0758(2)	3,35 (6)
S = 1.59	$1.96(2) \times 10^{-6}$	C(7)	0,3315 (3)	0,1947 (3	3) -0,1072 (2)	3,70 (6)
1684 réflexions	Facteurs de diffusion des	C(8)	0,2863 (3)	0,3288 (3	-0,0426(2)	3,60 (6)
287 paramètres	International Tables for	C(9) C(10)	0,2146 (3)	0,3174 (3	5) 0,0582 (2) 3) 0,0905 (2)	3,39 (6)
$w = 1/\sigma^2(F)$	X-ray Crystallography	C(10)	0,3113 (3)	0,0793 (3	3) 0,3041 (2)	3,53 (6)
$(\Delta/\sigma)_{max} = 0.07$	(1974 Tome IV)	N(12)	0,3756 (3)	0,2333 (2	2) 0,3337 (2)	3,93 (5)
$\Delta c = 0.19 (2) e^{A^{-3}}$	(1974; Tome 17)	C(13)	0,5218 (3)	0,3031 (3	3) 0,3950 (2)	3,78 (6)
$\Delta \rho_{\text{max}} = 0.13 (2) e \text{ Å}^{-3}$		C(14) C(15)	0,5941 (3)	0,4441 (3	$\begin{array}{c} 0,3733(2) \\ 0,4357(3) \end{array}$	4,74 (7) 5 86 (8)
$\Delta \rho_{\rm min} = -0.13$ (2) e A		C(16)	0,7985 (4)	0,4565 (4	b) 0,5199 (3)	6,12 (9)
		C(17)	0,7255 (4)	0,3157 (4	0,5406 (3)	5,87 (9)
Composé (2)		C(18)	0,5869 (3)	0,2378 (3	b) 0,4780 (3)	4,98 (7)
Données cristallines		C(20)	0,3771(2) 0.0339(3)	-0,0269 (2	0,3220(2)	4,48 (4) 5 03 (7)
C20H23NO2S	Mo $K\alpha$ radiation	C(21)	0,3453 (3)	-0,0954 (3	-0,1498(2)	4,48 (7)
$M_r = 341.48$	$\lambda = 0.7107 \text{ Å}$	O(22)	0,4017 (2)	0,2161 (2	2) -0,2059 (2)	5,29 (5)
Triclinique	Paramètres de la maille à	C(23)	0,3155 (4)	0,4812 (3	-0,0844(3)	5,41 (8)
$P\overline{1}$	l'aide de 25 réflexions	C(24)	0,1043 (4)	0,4391 (3	() (,1515 (2)	4,98 (7)
a = 8.304 (2) Å	$\theta = 7.38 - 14.84^{\circ}$	(2)				
b = 8,836(2) Å	$\mu = 0.186 \text{ mm}^{-1}$	O(1)	0,3052 (2)	0,6528 (2	$\begin{array}{c} 0,2291(1) \\ 0,2766(2) \end{array}$	3,31 (3)
c = 14,248 (3) Å	T = 292 K	C(2) C(3)	0,3018 (3)	0,3249 (2	(0, 2700(2))	3,56 (5)
$\alpha = 93.21(2)^{\circ}$	Tronc de pyramide	C(4)	0,2661 (3)	0,3718 (2	2) 0,0948 (2)	3,47 (5)
$\beta = 116,01 (2)^{\circ}$	$0,32 \times 0,26 \times 0,17 \text{ mm}$	C(5)	0,2654 (2)	0,5291 (2	2) 0,0595 (2)	2,89 (5)
$\gamma = 106,54 (2)^{\circ}$	Jaune très pâle	C(6) C(7)	0,2474 (2)	0,5477 (2	(2) = -0.0417(2)	3,09 (5)
$V = 881(1) \text{ Å}^3$	Source du cristal:	C(8)	0,2630 (3)	0,8254 (2	-0,0028(2)	3,39 (5)
Z = 2	évaporation d'une solution	C(9)	0,2815 (3)	0,8075 (2	.) 0,0978 (2)	3,18 (5)
$D_x = 1,288 \text{ Mg m}^{-3}$	dans l'éther diisopropy-	C(10)	0,2843 (2)	0,6600 (2	$0,1266(1) \\ 0,2205(1)$	2,94 (5)
	lique	N(12)	0,5799 (3)	0,3071 (2	0,3205(1)	3,40 (4)
		C(13)	0,8628 (3)	0,8157 (3) 0,3647 (2)	3,63 (5)
Collection des données		C(14)	0,8921 (4)	0,9573 (3) 0,3281 (2)	5,19 (7)
Diffractomètre Enraf-Nonius	$\theta_{\rm max} = 26^{\circ}$	C(15) C(16)	1,0764 (4)	1,0581 (4	0,3587(2)	6,74 (9) 7 07 (9)
CAD-4	$h = -10 \rightarrow 9$	C(17)	1,1988 (3)	0,8791 (4	0,4632(3)	6,60 (9)
Balavage A/2A	$k = 0 \rightarrow 10$	C(18)	1,0157 (3)	0,7753 (3) 0,4336 (2)	5,16 (7)
Pas de correction	$l = -17 \rightarrow 15$	S(19)	0,67834 (8)	0,42670 (7) 0,35522 (5)	4,25 (1)
d'absorption		C(20) C(21)	0,3203 (3)	0,5242 (3	(-0,3710(2)) -0,1186(2)	4,31 (6) 4,17 (6)

O(22)	0,2314 (2)	0,7236 (2)	-0,1681 (1)	4,68 (4)
C(23)	0,2539 (3)	0,9792 (3)	-0,0409 (2)	4,90 (7)
C(24)	0,2983 (3)	0,9431 (3)	0,1736 (2)	4,79 (6)

Tableau 2. Paramètres géométriques (Å, °) pour les composés (1) et (2)

composed	(1) (1)	(2)
	(1)	(2)
O(1) - C(2)	1,441 (3)	1,430 (3)
C(2) = C(3)	1,597 (5)	1,401 (3)
C(2) = C(3)	1,515(5)	1,552 (3)
C(2) - C(20)	1.525 (4)	1,528 (4)
C(3) - C(4)	1.521 (4)	1,523 (4)
C(4) - C(5)	1,508 (4)	1,505 (3)
C(5)-C(6)	1,400 (4)	1,408 (3)
C(5)-C(10)	1,390 (3)	1,385 (3)
C(6)—C(7)	1,383 (4)	1,381 (3)
C(6)—C(21)	1,512 (4)	1,508 (3)
C(7)—C(8)	1,399 (4)	1,398 (3)
C(7) - O(22)	1,383 (3)	1,389 (3)
C(8) - C(9)	1,394 (4)	1,390 (3)
C(8) = C(23)	1,510(4)	1,301 (3)
C(9) = C(10)	1,587 (4)	1,592 (5)
C(1) - N(12)	1,349 (4)	1.331 (3)
C(11) - O(19)	1,219 (3)	,-
C(11) - S(19)	,	1,656 (2)
N(12)-C(13)	1,415 (3)	1,417 (2)
C(13)—C(14)	1,377 (4)	1,381 (4)
C(13)—C(18)	1,379 (4)	1,381 (3)
C(14) - C(15)	1,394 (4)	1,386 (4)
C(15) - C(16)	1,377 (5)	1,369 (4)
C(16) = C(17)	1,373 (5)	1,303 (3)
C(17) = C(18)	1,384 (4)	1,369 (3)
C(2)—O(1)—C(10)	115,9 (2)	118,1 (2)
O(1) - C(2) - C(3)	109,7 (2)	109,6 (1)
O(1) - C(2) - C(11)	109,5 (2)	109,5 (2)
O(1) = C(2) = C(20)	105,0 (2)	104,7 (2)
C(3) = C(2) = C(11)	112,2(2) 1114(2)	112,9(2)
C(1) - C(2) - C(20)	108.1(2)	108.4(1)
C(2) - C(3) - C(4)	111,8 (2)	112,3 (2)
C(3) - C(4) - C(5)	112,5 (2)	112,2 (2)
C(4)—C(5)—C(6)	120,5 (2)	121,2 (2)
C(4) - C(5) - C(10)	121,0 (2)	120,6 (2)
C(6) - C(5) - C(10)	118,5 (2)	118,3 (2)
C(5) - C(6) - C(7)	119,2 (2)	118,7 (2)
C(5) = C(6) = C(21)	119,4 (2)	120,0(2)
C(7) = C(0) = C(21)	121,3(2) 1219(2)	121,2(2) 122,7(2)
C(6) = C(7) = O(22)	121,9 (2)	122.5(2)
C(8) - C(7) - O(22)	115.3 (2)	114.8 (2)
C(7) - C(8) - C(9)	118,9 (2)	118,7 (2)
C(7) - C(8) - C(23)	119,1 (2)	119,8 (2)
C(9)-C(8)-C(23)	122,0 (2)	121,5 (2)
C(8)—C(9)—C(10)	118,8 (2)	118,3 (2)
C(8) - C(9) - C(24)	121,0 (2)	121,3 (2)
C(10) - C(9) - C(24)	120,2 (2)	120,4 (2)
O(1) - C(10) - C(5)	122,0 (2)	122,1(2)
C(1) = C(10) = C(9)	113,3(2)	114,7(2) 123.2(2)
C(3) = C(10) = C(3)	1122,0(2)	112.5(2)
C(2) - C(11) - O(19)	121.5 (2)	,- (-/
C(2) - C(11) - S(19)	, , , ,	120,3 (1)
N(12)-C(11)-O(19)	124,0 (2)	
N(12) - C(11) - S(19)		127,1 (2)
C(11) - N(12) - C(13)	128,3 (2)	133,0 (2)
N(12) - C(13) - C(14)	117,6 (2)	115,2 (2)
N(12) - C(13) - C(18)	121,8 (2)	124,2 (2)
C(14) = C(13) = C(18) C(13) = C(14) = C(15)	120,0 (2)	110,8(3)
C(13) = C(14) = C(15) C(14) = C(15) = C(16)	120 1 (3)	119.8 (3)
C(15) - C(16) - C(17)	120.0 (3)	120,1 (3)
C(16) - C(17) - C(18)	120,4 (3)	121,4 (3)
C(13)-C(18)-C(17)	119,6 (3)	118,3 (3)

Les essais de résolution de la structure du composé (1) avec les programmes *MULTAN*11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982), *SIMPEL* (Shenk, Overbeek, van der Putten, Olthof, Shagen, Peschar, Seignette, Driessen & Kiers, 1982) et *SIR*88 (Burla, Camalli, Cascarano, Giacovazzo, Polidori, Spagna & Viterbo, 1989) n'ont pas abouti. La structure a été résolue à l'aide du programme *DIRDIF* (Beurskens, Bosman, Doesburg, Gould, van den Hark, Prick, Noordick, Beurskens, Parthasarathi, Bruins Slot, Haltiwanger, Strumpel & Smits, 1984) en utilisant comme modèle la molécule du composé (2). Les Fig. 1 et 2 ont été réalisées avec le programme *ORTEPII* (Johnson, 1976). Tous les programmes utilisés appartiennent au système *SDP* (B. A. Frenz & Associates, Inc., 1982) à l'exception de *SIR*88 lequel est inclus dans le système *MolEN* (Fair, 1990).

La structure du composé (2) a été résolue à l'aide du programme *SIMPEL*. Tous les calculs ont été effectués avec les programmes du système *SDP*.

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des angles de torsion, des distances des atomes aux plans moyens et des distances interatomiques intermoléculaires ont été déposées aux archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 71680: 40 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre. [Référence de CIF: PA1071]

Références

- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, EU.
- Bak, B., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1958). J. Mol. Spectrosc. 2, 361-368.
- Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., van den Hark, Th. E. M., Prick, P. A., Noordick, J. H., Beurskens, G., Parthasarathi, V., Bruins Slot, H. J., Haltiwanger, R. C., Strumpel, M. & Smits, J. M. M. (1984). DIRDIF. Rapport Technique 1984/1. Laboratoire de Cristallographie, Toernooiveld, 6525 ED, Nimègue, Pays-Bas.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Tome 1. New York: Ifi/Plenum.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Pays-Bas.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
- Shenk, H., Overbeek, O., van der Putten, N., Olthof, G., Shagen, J. D., Peschar, R., Seignette, P., Driessen, R. & Kiers, C. (1982). SIMPEL. Département de Cristallographie, Univ. d'Amsterdam, Pays-Bas.
- Stewart, J. P. P. (1983). MOPAC. QCPE Bull. N°. 455. Biosym Technologies, 10065 Barnes Canyon Road, San Diego, CA 92121, EU.
- Stewart, J. P. P. (1989). J. Comp. Chem. 10, 209-210.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, pp. 410-412. Londres: MacMillan.